Ottawa F-65 Sand Characterization
Soil Index Properties Summary

Ana Maria Parra Bastidas
Ph. D. Candidate
Department of Civil and Environmental Engineering
University of California Davis
Content

1. Specific gravity of solids, G_s
2. Grain size distributions
3. Minimum dry density, $\rho_{d\text{ min}}$
4. Maximum void ratio, e_{max}
5. Maximum dry density, $\rho_{d\text{ max}}$
6. Minimum void ratio, e_{min}
7. Hydraulic conductivity, k
1. Specific gravity of solids, G_s

- The selected value is:

$$G_s = 2.65$$

- Value obtained using the ASTM D854 – 14 method. The selected values is the average value of 2 measurements.
2. Grain size distributions

Values obtained using the ASTM D422 − 63 method. The selected values are the average value from 2 tests.

USCS=SP
% Fines=0.17%
$C_u=1.61$
$C_c=0.96$

(PB, 2016)
3. Minimum dry density, $\rho_{d \, \text{min}}$

- The selected values is:

$$\rho_{d \, \text{min}} = 1446 \, \text{kg/m}^3$$

- Value obtained using the ASTM D 4254 – 00 method and using the pluviation calibration mold, which has the same dimensions as the DSS confinement rings and bottom cap assembly. The selected value is the average value of 9 measurements.
4. Maximum void ratio, e_{max}

- The selected value is:

$$e_{\text{max}} = 0.83$$

- Value obtained from the selected values of G_s and $\rho_{d\text{ min}}$.

3/8/2016
Parra Bastidas (2016)
5. Maximum dry density, $\rho_{d\text{ max}}$

- The selected value is:

 $\rho_{d\text{ max}} = 1759 \text{ kg/m}^3$

- Value obtained the JIS A 1224 method, and using a steel mold with the dimensions as required by the JIS standard. The selected value is the average value of 3 measurements.
6. Minimum void ratio, e_{min}

- The selected values is:

 \[e_{\text{min}} = 0.51 \]

- Value obtained from the selected values of G_s and $\rho_{d\text{ max}}$.
7. Hydraulic conductivity, k

<table>
<thead>
<tr>
<th>Density descriptor</th>
<th>Dry density q_d (kg/m3)</th>
<th>Hydraulic conductivity, k_{at} at 20°C (cm/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(--)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loose specimen</td>
<td>1480</td>
<td>0.022</td>
</tr>
<tr>
<td>Dense specimen</td>
<td>1722</td>
<td>0.016</td>
</tr>
</tbody>
</table>

Values obtained using the ASTM D2434-68 constant head permeability test method, and by selecting the tests results from the loosest and densest tested specimens. Each test result is the average value of 9 measurements, which correspond to 3 measurements using three different hydraulic gradients per test.
Questions?
aparrabastidas@ucdavis.edu