The GridAuth Credential Management System *

Timothy Warnock, Wei Deng, Lawrence
Miller
San Diego Supercomputer Center
9500 Gilman Dr MC 0505
La Jolla, CA, United States, 92093

{twarnock|weideng|ljmiller;@sdsc.edu

ABSTRACT

Grid savvy credential management is a vital component in
the process of developing user accessible grid resources. In
order to facilitate secure single sign-on across distributed
systems a trusted credential repository can be leveraged by
multiple security domains. GridAuth manages user creden-
tials in a secure system allowing for seamless integration
with existing distributed resources. This paper describes
the GridAuth architecture, design, implementation and de-
ployment. GridAuth is currently deployed in NEES[14] to
manage all authentication, authorization and auditing.

Categories and Subject Descriptors

D.4.6 [Security and Protection]: Authentication, Ac-
cess Control; H.3.5 [Online Information Services]: Web-
based services; H.3.4 [Systems and Software]: Distributed
Systems

Keywords
Grid, Authentication, Authorization, Auditing, Security

1. INTRODUCTIONAND RELATED WORK

GridAuth is a user credential management system for dis-
tributed data and computational resources. Using a plugin-
based architecture, GridAuth is configurable and extensible;

*This work was supported primarily by the National Science
Foundation under Award Numbers CMS-0117853, CMS-
0086611, CMS-0086612.

Permission to make digital/hard copy of part of this work
for personal or classroom use is granted without fee pro-
vided that the copies are not made or distributed for profit
or commercial advantage, the copyright notice, the title of
the publication, and its date of appear, and notice is given
that copying is by permission of the ACM, Inc. To copy oth-
erwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and/or a fee.

2005 ACM 1073-0516,/01/0300-0034 $5.00

Adam Lathers
University of California San Diego
9500 Gilman Dr
La Jolla, CA, United States, 92093

alathers@ncmir.ucsd.edu

making it adaptable to any system requiring credential man-
agement, advanced authorization and secure authentication.

As distributed grid environments such as NEES[14] and GEON]8]

continue to evolve, centrally controlled credential manage-
ment systems are being developed to abstract traditional
GSI[6] services such as MyProxy[16] and CAS[18]. Web por-
tal solutions, such as GAMA([7] and PURSe[19] demonstrate
a growing need in virtual organizations to remove the com-
plexities of X.509[11] certificate management and provide
simple means for users to authenticate.

GridAuth provides a deployed authentication, authorization
and auditing system with an extensible architecture useful in
web portal environments as well as any distributed compu-
tational or data environment such as SRB[22] and Globus[5].
Furthermore, GridAuth leverages existing standards such as
GSI[6] as well as working to evolve future standards with re-
lated technologies such as SAML[20].

2. PROJECT MOTIVATION AND OVERVIEW

2.1 User Problem Statement

Grid security and credential management is difficult to the
point of unusable for both users and developers. Few tools or
APIs exist for developers to quickly add authentication and
authorization of grid credentials into an application. Users
who expect a simple password-based scheme must instead
manage their own certificate and key and understand the
mechanisms to manually delegate temporary proxy certifi-
cates[23]. GridAuth provides a turnkey solution for building
an effective and user-friendly GSI[6] system.

2.2 Use Cases

The account and user credential system provided by Gri-
dAuth supports a variety of use cases.

e Authentication One of the most challenging se-
curity problems facing distributed grid environments
is authentication. Authentication is the process where
a user proves his or her identity; that they are who
they say they are. GridAuth relies on GSI[6] authenti-
cation leveraging public-key cryptography and mutual
authentication.

GridAuth extends the standard GSI[6] model by in-
troducing user-friendly sign-on mechanisms where au-
thentication is abstracted from the user point-of-view.

Using GridAuth, users simply login with a username
and password, all GSI[6] credentials are centrally man-
aged behind the scenes without the users’ direct in-
volvement.

Authorization Authorization is the process of
granting or denying access to a resource. This is a crit-
ical component in any distributed environment where
resources often cross various security domains. Gri-
dAuth provides role-based authorization with unlim-
ited roles as needed by the given user community. Fur-
thermore, a given account can be affiliated with unlim-
ited roles.

Auditing One of the core principles to any se-
curity infrastructure is the process of auditing; se-
curely and thoroughly recording authentication and
authorization requests. In distributed grid environ-
ments this is a challenging problem due to the many re-
sources spread across various security domains. Most
GSI[6] models do not provide central auditing, which
poses significant risk to all resources involved in a grid.
By maintaining a centrally controlled distributed secu-
rity infrastructure, GridAuth provides a central facility
for logging all authentication attempts and provides a
method to allow remote applications to send messages
to a logger service.

Single-Sign-On In addition to basic authenti-
cation, an authenticated user can maintain their ses-
sion across a distributed grid-based environment. Gri-
dAuth utilizes centrally controlled session handling to
allow single sign-on. In practice, this means that a
user can login through any possible entry point in a
distributed grid and access all resources that they are
authorized to access.

Delegation To allow a user access to a resource
that they are authorized to use, but exists in an exter-
nal security domain, a process of delegation must ex-
ist to allow the authentication and authorization to be
recognized without compromising any centrally man-
aged security infrastructure. GridAuth extends the
GSI[6]-based X.509 proxy certificates[23] with the ad-
dition of short-lived session-ids that map one-to-one
with each authentication instance and each proxy cer-
tificate[23].

Upon successful login to a GridAuth system, a ses-
sion id is generated along with a valid X.509 proxy
certificate[23]. A GridAuth session is a unique hash
sequence that is transmitted to remote security do-
mains over TLS and is only valid for the duration of the
users’ session. Omnce the session id has been validated
on a remote system through the centrally controlled
GridAuth server, then the username, X.509 proxy cer-
tificate[23], access roles, and other account credentials
are available to the remote application.

Account Synchronization Distributed grid en-
vironments, by design, involve shared resources spread
amongst various security domains. In many cases,
legacy applications are shared with newer GSI[6]-based
applications and have no built-in method to access
the basic authentication and authorization provided
by GSI[6]. GridAuth helps to alleviate this problem

by providing an extensible plugin framework to extend
the basic GridAuth functionality by writing custom
plugins.

Account Management In a real-world deploy-
ment an effective and robust account management sys-
tem must be provided to allow administrators to man-
age accounts. GridAuth provides a web-based account
request system where accounts can be requested from
a web-portal interface. An account management por-
tal is provided where each request can be confirmed or
denied. All details of the underlying security infras-
tructure, such as an X.509 certificate and key[11] are
abstracted from this interface.

2.3 Requirements
The design, implementation, and deployment of GridAuth
meet the following requirements.

Client System No Globus[5], GSI[6], or other
security software needs to be installed on the end-user
system.

Server System A traditional LAMP (Linux, Apache,

MySQL, and PHP /Perl) platform is recommended al-
though not required. The core GridAuth service is pro-
vided through Perl modules including Perl DBI/DBD
for all database access. Globus[5] and OpenSSL[17]
are required for full GSI[6] support.

Simple username/password Login All end-
user authentication must be handled through a sim-
ple username and password login. Furthermore, no
middleware or GSI[6] handling should be required for
logging into the system.

Single Sign-On Any resource that can be ac-
cessed by a single username and password login must
also be accessible to users who have already entered
their username and password. There must be no de-
pendence on where an account was authenticated. Users
should be able to authenticate anywhere on the grid
and access any resource they are authorized to access
for the duration of their session.

Forgot Passwords Passwords can be reset in an
automated fashion, for example, emailing the user for
account verification.

Role-Based Access Access to any resource can
be controlled, by approving or denying specified roles
rather than on an account by account basis.

Application Neutral No specific application plat-
form is required for integration with distributed grid
resources. For example, web portal interfaces may be
used along side client applications.

No Local User Accounts GridAuth users exist
in the abstracted domain of a distributed grid, that is,
the collection of all distributed resources in a virtual
organization. As a result, local accounts are not re-
quired although may still be used to map access roles.

Grid App I GridAuth Central Server
e — | —
Ciient API

!—,Jl ~~_ | Service ﬁ:rad.«uth ns)

| ~ Handier A4
e
/ < i
user” \ |
D U
| Plugini |
New ____|/Account et
User Request —f Plugin2’ |
T [——
pluging
I AcCcouiit 4]- Plugi i
Admin___—— Management
User T

Figure 1: GridAuth Architecture

e Minimize grid-mapfile Maintenance Tradi-
tional GSI[6] solutions require maintaining grid-mapfiles
across a diverse set of resources for every account in
the grid. This process is not scalable and presents an
inordinate burden on system administrators. There
may be role accounts for specific resources as required
by a specific application.

e No User Managed Credentials GridAuth pro-
vides central management for distributed resources and
users. In the regular GSI model, the users maintain
grid credentials and generate the corresponding proxy
credentials on their local systems, which are not nec-
essarily trusted or well-protected. In the GridAuth
framework, credentials are managed on a trusted and
secure system with limited access, where security pro-
tection is easier to enforce and monitor. With central-
ized management of user credentials, it also has the
benefit of lifting the burden on the regular users to
maintain acceptable security for their credential files.

3. ARCHITECTURE

GridAuth provides client APIs used by external applications
or grid nodes; these APIs communicate with a central ser-
vice handler that manages the plugin stack. Plugins are
completely customizable and configurable to facilitate mi-
gration issues with existing grids as well as advanced grid
specific resource synchronization. Account management is
provided through both an administrative web interface as
well as a command line interface. The framework is shown
as in Figure 1.

3.1 Client API

The client API provides high-level functions to application
developers for authentication and authorization. The under-
lying implementation details are all handled on the server
side making the client API extremely lightweight, secure and
portable.

For example, if a specific GridAuth instance was utilizing
MyProxy[16] and LDAP[24], the application developer does
not need to interface with either of those systems directly.
Instead the API provides high level functions, such as login
and logout. The service handler will interface with specific
plugins for MyProxy[16] and LDAP[24], returning the fully
transparent results to the client API.

This abstraction is helpful to minimize the load on devel-

opers; it allows for easy migration of existing services, and
helps to enforce consistency in the requirements and ap-
plication of security policies. Furthermore, this allows for-
ward and backwards compatibility with specific authentica-
tion and authorization infrastructure.

3.2 Service Handler

The service handler accepts requests from any client API
and will pass off the request to the plugin stack. The service
handler maintains a customized list of plugins defined for the
specific grid instance. All network transactions occur over a
secure SSL[3] port, sending XML[1] responses via HTTP[4].

3.3 Plugin Stack

A GridAuth instance includes a plugin stack made of ex-
isting and custom built plugins, each one implementing re-
quired interface functions (such as login and logout). For
example, when a client API sends a login request, the ser-
vice handler will call login methods, in an ordered fashion,
on each one of the plugins in the stack. Upon successful
login (all plugin calls return true) the response is sent back
to the client API via the service handler. The exact plugin
design is defined in section 5.1.

3.4 GridAuth Database

The GridAuth database is provided to allow for persistent
storage of session information in addition to permanent stor-
age of user account information. The plugin design (section
5.1) provides all plugins with access to this database. Not
all plugins will utilize the database, but is provided for con-
venience and performance.

3.5 Account Request

New users can freely request accounts via a simple web in-
terface. The web interface is defined by the plugin stack. In
this manner, plugins can be defined to gather information
specific to a grid instance or organization. For example, a
plugin could be provided to request for height, weight and
age if this was something worth capturing (e.g. clinical pa-
tient grid). All information must be stored pending account
approval or denial.

3.6 Account Management

Account management is provided via command line tools
and additionally as a web interface. The administrative
user can list all active grid accounts and modify or delete as
needed. Account requests can be viewed, edited, activated
or deleted. Any account actions will trigger the correspond-
ing method in the plugin stack. For example, upon account
creation, every plugin in the stack will call its account cre-
ation method.

4, DESIGN ISSUES

GridAuth provides multiple client API’s that use standard
HTTP[4] over SSL[3] to communicate with a central server.
A GridAuth central server handles all authentication and
authorization requests for all grid sessions. Additionally,
the central server is responsible for all auditing requests.

To facilitate a custom grid environment, plugins can be used
to offer grid administrators total flexibility. When a Gri-
dAuth instance is installed, specific plugins are registered

through a simple configuration process. The service handler
will call every registered plugin upon each transaction. The
service handler will call these plugins in the order they are
registered.

All plugins have access to an SQL compliant relational database

(default MySQL) to store permanent and temporary infor-
mation. This includes in-memory information about active
sessions as well as permanently stored user credentials.

4.1 System Requirements

Any system capable of running Apache, Perl, and MySQL
will be able to run GridAuth. However, individual plugins
may have more specific requirements. For example, a certifi-
cate authority plugin may require OpenSSL and Globus|[5].
It is the responsibility of the plugin author to strictly define
the system requirements for the plugin.

4.2 Integration Issues

The core GridAuth module has no impact on existing soft-
ware. However, individual plugins may have direct impact
on other software. For example, a tmpfs file system mount
may be required for a proxy[23] store plugin. It is the respon-
sibility of the plugin author to identify integration issues and
dependencies.

4.3 Security Issues

All remote access is strictly confined to the service handler;
the service handler inherits all security issues from the web
server. It is strongly recommended that the service handler
run over SSL[3] and never over an unencrypted HTTP[4]
port.

Grid sessions are uniquely identified with a session key. A
session key is a unique SHA1 hash value which is passed
from one grid application to another over a secure channel.
While intercepting a session key is dangerous, this is more
secure than the standard grid convention of delegating proxy
certificates[23]. An X.509 proxy certificate[23] is valid for a
fixed duration, whereas a session can be terminated as soon
as a user logs out.

Currently, a random-seed SHA1 hash value is used to uniquely
identify all active sessions. This presents the risk of a brute-
force attack to determine active sessions. This risk is min-
imal since session duration is likely to be far shorter than
the computation time required for a brute force SHA1 at-
tack[21], which is on the order of 2*¥*69 hash operations.
Stronger hash schemes, such as SHA256 further mitigate
this risk.

4.4 User Impact

GridAuth has no direct user interface; however, GridAuth
is designed specifically with users in mind. GridAuth al-
lows for a true single-sign-on environment where a user will
never need to understand or directly manage grid creden-
tials. For example, rather than explicitly delegating proxy
certificates[23], the user simply moves from one application
to another, the proxy[23] delegation is performed behind the
scenes.

45 Risks

GridAuth centrally manages all authentication and autho-
rization services, this presents a logical single point of fail-
ure. To mitigate this risk, appropriate measures must be
taken to provide fault tolerance on the central server run-
ning GridAuth in addition to the GridAuth instance itself.

5. IMPLEMENTATION
5.1 Plugin Design

The plugin design includes the following interface methods;
this allows customized functionality without impacting ex-
isting code.

-useradd (username, userinfo)

-usermod (username, userinfo)

-userdel (username)

-login(session)

-login(username, password)

-logout (session)

-groupadd (group)

-groupmod (group, add|delete, username)
-groupdel (group)

-install()

5.2 Command-line Tools

As an alternative to using a web administration page, ac-
count management can be performed through the command
line. Command line usage is as follows:

./gridauth <command> <options>

Valid commands and options include
useradd <username> {<key>=<value>}
usermod <username> {<key>=<value>}
userdel <username>
groupadd <group>
groupmod <group> add|delete <username>
groupdel <group>
status
list

5.3 Service Handler

The service handler interfaces between the client API and
the core GridAuth plugin stack. The service handler sup-
ports methods for login, logout and logger (to log arbitrary
messages). Standard HTTP[4] POST values can be sent
to the service handler. The service handler responds with
a simple XML[1] response that is generated by the plugin
stack. The API parses the XML[1] response and makes the
data available through access methods.

The service handler response DTD:

<!DOCTYPE GRIDAUTH [

<!ELEMENT GridAuth (key*)>
<!ELEMENT key (#PCDATA)>

<!ATTLIST GridAuth Version CDATA #REQUIRED>

<!'ATTLIST key name CDATA #REQUIRED>

1>
An example service handler response XML[1]:

<GridAuth version="1.0">
<key name="username">jdoe</key>
<key name="email">jdoe@email.com</key>
<key name="first_name">John</key>
<key name="last_name">Doe</key>
<key name="phone">858.555.5473</key>
<key name="address">0505</key>
<key name="comments'">no comment</key>
<key name="groups'">nees neesit</key>
<key name="session">

bldce9ec8£8a395130a56e603£025042

</key>

</GridAuth>

5.4 Client API

Currently, client API’s have been implemented for Java,
Perl, and PHP. Client APT specification is detailed in ” Gri-
dAuth API Specification”, available here:
http://gridauth.com/?loc=doc

6. PRODUCTION DEPLOYMENT

6.1 NEES Authentication and Authorization

The George E. Brown, Jr. Network for Earthquake Engi-
neering Simulation (NEES)[14] integrates 15 national state-
of-the-art earthquake engineering experimental facilities with
central data and computational services through a unique
IT infrastructure, called NEESgrid[12], to link earthquake
researchers across the United States with leading-edge com-
puting resources and research equipment, allowing collabo-
rative teams (including remote participants) to plan, per-
form and publish their experiments.

Early phases of the NEESgrid[12] implementation used a
pure GSI[6] model to authenticate users and services, and
manage users’ credentials and proxy certificates locally. This
practice is hard to be understood and executed by regular
earthquake researchers, as they are usually not computer
savvy users and sometimes don’t even know how to use the
command line interface of a Unix system and how to manage
their credential files. It also requires a lot of maintenance
from the system administrators of the resources to manu-
ally update the mappings between grid identities and local
accounts.

With the integration of GridAuth, the users only need to re-
member the username and password to authenticate to the
GridAuth web portal, and have the central GridAuth server
to manage all of their grid credential files. The login web
interface on all resources use GridAuth client APT so that
the users can choose to login at any resource with their Gri-
dAuth credentials and get assigned session ID, which can
be later used for authenticating at the other GridAuth sup-
ported resources. Through the GridAuth client API, the
login events at the resources are also reported back to the
GridAuth server as audit trails.

6.2 NCMIR Single Sign-On

NCMIR/[13] is leveraging the GridAuth package to allow for
a smooth integration between multiple in-house and third
party software suites. By utilizing this technology, NCMIR[13]
is able to provide a smooth interchange between otherwise
disjoint software sets. Initial drafts include integration be-

tween existing lab resources, the NCMIR[13] Intranet, CCDBJ2],

and the Neurosys digital lab notebook system[15]. By ab-
stracting the authentication and authorization process away
from the user, it is possible to remove the burden of man-
ually joining the functions of all these tools, and instead,
allow users to smoothly control data and grid accessible re-
sources like the CCDBJ[2].

7. CONCLUSION AND FUTURE WORK

The GridAuth credential management system presented in
this paper is a flexible and extensible solution for authen-
tication, authorization and auditing across distributed re-
sources. GridAuth is adaptable to several platforms and
network-accessible resources including web portals as well
as distributed computation-intensive and data-intensive ap-
plications. With successful deployment in NEES[14] and in-
tegration with NEESgrid[12] software, GridAuth has proven
to simplify account and credential management while pro-
viding simple login mechanisms and single sign-on across
distributed resources.

Future work includes improved security by integrating client-
side challenge-response login functions to avoid transmitting
sensitive information. Additionally, one-time-password sys-
tems may be integrated as well as single-use session identi-
fiers to remove the risk of stolen or compromised session ids.
GridAuth is freely available to the public through Source-
forge[10] and from the GridAuth website[9].

8. REFERENCES
[1] J. Boyer. RFC 3076: Canonical XML Version 1.0.
IETF RFC Publication, March 2001.
http://www.ietf.org/rfc/rfc3076.txt.

[2] CCDB. CCDB: Cell Centered Database.
http://ccdb.ucsd.edu/.

[3] N. C. Corporation. The ssl protocol version 3.0.
http://www.netscape.com.

[4] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and
T. Berners-Lee. RFC 2068: Hypertext Transfer
Protocol - HTTP/1.1. IETF RFC Publication,
January 1997. http://www.ietf.org/rfc/rfc2068.txt.

[6] I. Foster and C. Kesselman. The globus project: A
status report. In HCW ’98: Proceedings of the Seventh
Heterogeneous Computing Workshop, page 4,
Washington, DC, USA, 1998. IEEE Computer Society.

[6] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A
security architecture for computational grids. In CCS
’98: Proceedings of the 5th ACM conference on
Computer and communications security, pages 83-92,
New York, NY, USA, 1998. ACM Press.

[7] GAMA. GAMA: Grid Account Management
Architecture. http://grid-
devel.rocksclusters.org/gridsphere/gridsphere?cid=gama.

[8] GEON. GEON: The Geosciences Network.
http://geongrid.org.

[9] GridAuth. GridAuth: Grid Authority.
http://www.gridauth.com/.

[10] GridAuth. SourceForge: Project GridAuth.
https://sourceforge.net /projects/gridauth/.

[11] R. Housley, W. Ford, W. Polk, and D. Solo. RFC
2459: Internet X.509 Public Key Infrastructure
Certificate and CRL Profile. IETF RFC Publication,
January 1999. http://www.ietf.org/rfc/rfc2459.txt.

[12] B. S. Jr., T. Finholt, I. Foster, C. Kesselman,
C. Beldica, J. Futrelle, S. Gullapalli, P. Hubbard,
L. Liming, D. Marcusiu, L. Pearlman, C. Severance,
and G. Yang. Neesgrid: A distributed collaboratory
for advanced earthquake engineering experiment and
simulation. In 138th World Conference on Earthquake
Engineering (WCEE), August 2004.

[13] NCMIR. NCMIR: National Center for Microscopy and
Imagine Research. http://ncmir.ucsd.edu/.

[14] NEES. NEES: Network for Earthquake Engineering
Simulation. http://www.nees.org.

[15] nhdb. Neurosys hierarchical db.
http://neurosys.cns.montana.edu/.

[16] J. Novotny, S. Tuecke, and V. Welch. An online
credential repository for the grid: Myproxy. In HPDC
’01: Proceedings of the 10th IEEE International
Symposium on High Performance Distributed
Computing (HPDC-10°01), page 104, Washington,
DC, USA, 2001. IEEE Computer Society.

[17] openssl. Openssl project. http://www.openssl.org.

[18] L. Pearlman, V. Welch, I. T. Foster, C. Kesselman,
and S. Tuecke. The community authorization service:
Status and future. CoRR, ¢s.SE/0306082, 2003.

[19] PURSe. PURSe: A Portal-based User Registration
Service. http://www.grids-center.org/solutions/purse.

[20] SAML. Security assertion markup language (saml)
working draft. http://www.oasis-
open.org/committees/documents.php?wg_abbrev=security.

[21] B. Schneier. Shal broken.
http://www.schneier.com/blog/archives/2005/02/shal_broken.html.

[22] SRB. SRB: Storage Resource Broker.
http://www.sdsc.edu/srb/.

[23] V. Welch, I. Foster, C. Kesselman, O. Mulmo,
L. Pearlman, S. Tuecke, J. Gawor, S. Meder, and
F. Siebenlist. X.509 proxy certificates for dynamic
delegation. In 3rd Annual PKI R&D Workshop, 2004.

[24] W.Yeong, T. Howes, and S. Kille. Lightweight
Directory Access Protocol. Technical Report Internet
RFC-1777, IETF, 1995.
http://www.ietf.org/rfc/rfc1777.txt.

