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ABSTRACT: Recently, a summary of some of the available assessment measures that can be 

implemented by users to evaluate the accuracy of a hybrid simulation was published in the 

NEEShub [1]. The current document reviews two more sets of tracking measures, namely, Phase 

and Amplitude Error Indices (PAEI) and frequency domain-based (FDB) error indicators that 

can be successfully used as a post-processing tool. PAEI and FDB do not use test setup specific 

parameters and as such, can be used as standard tools for assessing the quality of the experiments 

performed in different laboratories or under different conditions. Additionally, FDB error 

indicators use uncomplicated mathematical functions, which make them suitable for 

implementation in real-time hybrid simulation. They been already implemented and 

experimentally verified as online indicators and have been incorporated into an adaptive servo-

hydraulic control loop. In this document, through several numerical and experimental 

simulations, the capabilities of PAEI and FDB indicators in assessing the success of hybrid 

simulations are demonstrated. 

1. INTRODUCTION 

 

Several potential experimental and numerical error sources such as the truncation errors, 

communication delays and inherent actuator dynamics can result in undesirable differences 

between the command and measured signals in hybrid simulation [1]. This is of major 

importance because it has been previously shown that hybrid simulation is vulnerable to error 

propagation, which can affect the accuracy and even the stability of the entire experiment [2]. 

Since it is not always possible to have shake table or accurate theoretical results for comparison 

and assessment of the quality of the hybrid simulations, it is imperative to employ efficient 

measures to establish the reliability of the experiments. 

In [1], the available assessment measures from the literature are mainly categorized into two 

classes of local and global response assessment measures. As such, the main focus of the local 

response assessment methods is to evaluate the accuracy of the synchronization of the numerical 

and physical components and various time domain, frequency domain and energy-based analyses 

[1] are performed to measure the actuator tracking error (i.e. inability of the hydraulic actuators 

to attain the command displacements during the specified time interval). Fig. 1 illustrates the 

difference between command and measured displacements in hybrid simulation. Mercan and 

Ricles [3], independent of a particular integration algorithm, investigated the accuracy and 

stability characteristics of the outer loop dynamics of real-time pseudodynamic tests. They 

concluded that in comparison to other types of errors, the delay (i.e. phase lag) in the measured 

signals is more critical as it introduces additional energy into the system and causes instability in 

the outer loop dynamics. Consequently, it is crucial to develop error indicators that are capable 
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of decoupling various types of tracking errors (i.e. phase and amplitude errors) and can be 

implemented and executed in real-time. The latter enables the error indicators to be used online 

to monitor the actuator tracking as the simulation progresses. 

 

 
 

Fig. 1. Block diagram for a hybrid simulation [3]. 

 

In the following sections, the equations for the PAEI and FDB error indicators are introduced 

and then through numerical and experimental studies, the accuracies of these error indicators in 

quantifying the tracking errors are investigated. In addition, their performances are compared to 

other local response assessment measures listed in [1]. 

2. FORMULATION OF PAEI AND FDB ASSESSMENT MEASURES 
 

2.1. PHASE AND AMPLITUDE ERROR INDICES (PAEI) 

 

In 2012, to account for the problems with previous assessment measures, based on the 

characteristics of the Synchronization Subspace Plots (SSPs) of command and measured 

displacements, Mirza Hessabi and Mercan proposed PAEI [3]. SSPs have the measured signal 

(i.e., displacements) plotted against the commands, and are used in signal processing. In Fig.2 

(a), for one cycle of command displacement (referred to as command), the measured 

displacements are considered to have overshoot and undershoot amplitude error (indicated as 

overshoot and undershoot, respectively). In Fig. 2(b), it can be seen that for the perfect tracking 

case (i.e., when the measured displacements are exactly the same as the commands), the SSP is a 

straight line with 45 inclination. With overshoot amplitude error, the inclination angle of the 

SSP is greater than 45, and similarly with the undershoot error it is less than 45. Fig. 2(c) 

considers phase errors in the form of lead and lag as indicated. When there is a phase error in the 

measured displacement, the SSP is no longer a straight line, but it exhibits elliptical hysteresis. 

The hysteresis loops evolve clockwise in the presence of phase lead and they evolve 

counterclockwise when there is a phase lag in the measured displacement (see Fig. 2(d)). Fig. 3 

shows the command and measured displacements from a real-time PSD test (Fig. 3(a)), and the 

corresponding SSP (Fig. 3(c)). As can be seen in the enlarged view in Fig. 3(b) there are 

amplitude and phase errors in the measured displacements superimposed with the noise. The 

effect of the noise in the SSP can be observed better in the enlarged view in Fig. 3(d).  

SSPs were also employed by Mercan and Ricles [4] and the enclosed area by these plots was 

used in the formulation of Tracking Indicators (TIs). However, instead of computing the 
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enclosed areas, in the derivation of PAEI, a least square fitting method was used to fit the data 

points of the SSP at a given time window to the equation of an ellipse described by Equation 1. 

 

 
 

Fig. 2. Sinusoidal actuator displacement time histories and associated SSPs [3]. 

 

 
 

Fig. 3. Displacement time histories of real experiment and associated SSPs [3]. 
 

These equations of the ellipses as they evolve and appear in the synchronization subspace are 

directly correlated to the phase and amplitude errors in the corresponding time windows. 
  

    
           

              (1) 
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where, Dc and Dm are command and measured displacements, respectively and a, b, c, d, e and f 

are the ellipse parameters that should be determined from the fitting process. 

The correlation between the parameters of the fitted ellipse and phase and amplitude errors (  

and   , respectively), are shown in Equations 2 and 3: 
 

            
 

   
   (2) 
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In the above equations, an amplitude ratio (ΔA) is defined as the ratio of the command over 

measured displacement amplitudes. Similarly, a phase error (  ) is defined based on the 

discrepancy of the phase shifts between the command and measured signals. For the amplitude 

error, the obtained value of ΔA in Equation 3 readily determines the type of the error, where, a 

value greater than one is an indication of undershoot error and a value less than one represents 

overshoot. On the other hand, the phase error determined by Equation 2 is always a positive 

quantity. To distinguish a negative phase error (i.e., lag) from a positive one (i.e., lead) the 

proper sign needs to be introduced. This is done by using the angle accumulated within each time 

window. The angle accumulated is computed in such a way that it is a positive quantity when the 

SSP evolves clockwise (e.g., phase lead behaviour) and is negative for the opposite evolution of 

the SSP (e.g., phase lag behaviour) for the time window considered. Thus, the sign of the 

accumulated angle readily determines the correct sign for the phase error. It should be added that 

in the formulation of PAEI, a moving time window approach is adopted, where for the ith step at 

time ti (i.e., ((Dc)i, (Dm)i)), in addition to this last point on the SSP, an appropriate number of 

previous data points are considered. To determine the proper size of the time window, 

recommendations provided in [3] can be used. 

Fig. 4 introduces the flowchart that explains the implementation of the required steps for 

calculating PAEI. The definition of the parameters appeared in the flowchart can be found in [3]. 

As can be seen in the flowchart, the very first time window needs special consideration. The 

process starts with a predefined number of initial data points followed by ellipse fitting. In each 

iteration step, the center of the fitted ellipse is computed and   checks to determine the proper 

size of the time window are performed. For the very first window, when these checks are not 

satisfied, one more data point is added marching forward in time (i.e., the end index of the data 

subset array is modified). The steps are the same for all the consequent time windows, the only 

difference is that each new data point is added going backwards in time (i.e., the start index of 

the data subarray is modified). This way, PAEI has the potential to be applied online for 

processing the data in real-time as the test progresses. Once each time window converges, the 

phase and amplitude errors are computed using the closed-form relationships presented in 

Equations 2 and 3, and they are recorded. 

 
2.2. FREQUENCY DOMAIN-BASED ERROR INDICATORS (FDB) 

 

Despite of being accurate, the calculation of PAEI involves solving large eigenvalue problems 

at each time step and therefore it is relatively computationally expensive. This limitation does 

not threaten the performance of PAEI as post-processing assessment tools but it makes it difficult 

to use them in real-time hybrid simulation as online indicators. To overcome this limitation, 

Mirza Hessabi et al. [5] proposed a new set of measures that were still able to uncouple the phase 
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and amplitude errors and quantify them but unlike PAEI, these could be implemented and 

executed in real-time and served as online indicators. 

 
 

 
 

Fig. 4. Flowchart for the implementation of PAEI [3]. 
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For the calculation of the FDB error indicators, the same time windowing approach as 

described in the previous section was used. In addition to some differences in their formulations, 

this windowing procedure distinguishes FDB indicators from the Frequency Evaluation Index 

(FEI) developed by Guo et al. [6]. FDB error indicators are derived using discrete Fourier 

transforms (DFTs). By definition, the DFT spectrum is a periodical spectrum and is discrete in 

frequency domain. To obtain the FDB error indicators, first the DFT power spectra need to be 

calculated for the command and measured signals independently. Then, from each power 

spectrum, the frequency that corresponds to the largest amplitude is located (i.e.   
  and   

 
 for 

command and measured signals, respectively). As shown in Equation 4, the ratio between the 

magnitudes of the power spectra at the frequencies of   
  and   

 
 can be used to determine the 

amplitude ratio, 

 

           
          

     (4) 

 

Likewise, the phase error is found as the difference of the DFT phase spectrum values of the 

two signals at   
  and   
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    (5) 

 

Similar to PAEI, positive and negative phase error values from Equation 5 show phase lead 

and lag, respectively. Moreover, a value greater than one obtained from Equation 4 is an 

undershoot error and a value less than one represents overshoot. Moreover, it should be 

emphasized that the closer    and    values are to 1 and 0, respectively, the more accurate is the 

actuator control and the more reliable are the simulation results. In order to implement FDB error 

indicators as online indicators that assess the error as a function of time as the real-time hybrid 

simulation progresses, the DFT spectra are obtained and a windowing approach is employed. To 

reduce spectral leakage effects, windowing functions (e.g. Han, Hamming windows) should be 

used and special care should be taken about the DC component of the frequency response. 

3. COMPARISON WITH OTHER LOCAL RESPONSE ASSESSMENT MEASURES 

 

As it is listed in [1], there are several other local response assessment measures. In this 

section, differences between these measures and the two types of indicators that are reviewed in 

this paper (i.e., PAEI and FDB error indicators) are explained. Using numerical and experimental 

case studies, quantitative comparisons between these measures are shown in Section 4. 

A normalized root mean square in experiment (NRMSE) is the first time domain based 

measure that will be discussed in this section [7, 8]. Although NRMSE provides valuable 

qualitative insights into actuator tracking (in terms of the difference between the measured and 

command displacements), it often fails to provide quantitative assessment into the effects of 

actuator delay due to their dependence on the response history [6]. On the other hand, the cross 

correlation between the target and measured displacement can be used to estimate the actuator 

delay. However, the cross correlation between the target and measured displacement fails to 

provide quantitative assessment into the effects of the amplitude error. 

Energy methods such as Hybrid Simulation Error Monitors (HSEM) [9, 10] and energy error 

indicator (EEI) [11] were introduced to use energy parameters to quantify the difference between 
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actual experimental behavior and that observed in explicit numerical simulations. These 

indicators estimate errors associated with phase (i.e., lead/lag) but they do not address the 

amplitude errors. As such, in the presence of both amplitude and phase errors, the energy-based 

indicator lumps these two types of errors together. Moreover, energy methods are influenced by 

the structural model and ground motion considered. For instance, to assess the accuracy of a 

given test result and establish an acceptable threshold for HSEM, numerical simulations that 

determine a relationship between the accuracy measures and HSEM need to be carried out and as 

a result, energy methods can be considered as test structure/experiment specific. This implies 

that the values of energy-based indicators obtained from two different tests with considerably 

different command displacement histories and/or different test structures cannot directly be 

compared to each other. On the other hand, PAEI and FDB error indicators do not use test setup 

specific parameters in their formulation, and can quantify the errors independent of the amplitude 

of the command displacements. As such, PAEI and FDB error indicators can be used as a 

standard tool for assessing the quality of the experiments performed in different laboratories or 

under different conditions. 

Another tool for assessing the actuator tracking performance in hybrid simulations is the 

Tracking Indicator (TI) [4] in which the areas enclosed by the SSPs are used. Similar to energy 

methods, although TI is useful in evaluating the test results, it cannot determine the amplitude 

and phase errors separately and is affected by the amplitude of the command displacements. As 

such, it cannot serve as a standard assessment tool for the real-time test results. 

Through numerical and experimental simulations, the abovementioned differences are shown 

in the next Section.  

4. NUMERICAL AND EXPERIMENTAL CASE STUDIES 

 
4.1. PHASE AND AMPLITUDE ERROR INDICES (PAEI) 

 

To evaluate the performance of PAEI, four different cases summarized in Table 1 are considered. 

As will be discussed in detail later, comparisons of tracking evaluation with HSEM, TI and PAEI 

are provided using numerical simulations, and also real experimental data (Case (iv)).  

 

4.1.1. Case (i) 

 

In Case (i) predefined displacement command (Equation 6) and measured (Equation 7) signals 

with known phase and amplitude errors are processed using PAEI. 

 

                (6) 

                         (7) 

 

where, t is time,  t is the size of time steps and is equal to 1/1024 seconds (which is the clock 

speed of a typical digital controller), uc and um represents command and measured displacements, 

respectively. Also, Ac and Am refer to the amplitudes of the command and measured 

displacements. In this case, Ac and Am are assumed 1.5 and 2.0 mm, respectively. As can be seen 

from Equations 6 and 7 (and also summarized in Table 1), there is a constant overshoot error of 

0.5 mm in the measured displacement, and a time lead of 15 time steps. Note that, considering 
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the frequency of the signals (i.e.,     ) this time lead corresponds to a phase lead of 0.1381 

rad (i.e.    
     

    
           ). 

 

Table 1.Cases considered in the performance evaluation of the tracking indicators [3] 

 Description 
Input Force 

(kN) 

Introduced 

time shift 

Introduced amplitude  

error 

N
o

n
li

n
ea

ri
ty

 

N
o

is
e 

Case(i) 

Predefined 

displacement 

signals 

----- 
15 

time steps 

(lead) 

- 0.5 mm 

(overshoot) 
No No 

Case (ii-a) 
Simulink 

model 

50 × sin (2  π×
 

  
) 5  

time steps 

(lag) 

10% overshoot 
(- 0.1 × Ac) 

No No 
Case (ii-b) 100 × sin (2  π ×

 

  
) 

Case(iii) 
Simulink 

model 
100 × sin (2  π ×

 

  
) 

-5  

time steps 
(lag)  

0 < t < 5s: 10% overshoot 

(- 0.1 × Ac) 

5 < t < 10s: 25% 
undershoot 

(0.25 × Ac) 

Yes Yes 

Case (iv) 
Experimental 

data 

Canoga Park 

earthquake ground 

acceleration 

----- ----- Yes Yes 

 

Fig. 5(a) shows the command and measured displacements for Case (i) for 6 seconds, where 

the corresponding SSP is provided in Fig. 5(b). A closer look at the PAEI in Fig. 5(c) and (d) 

shows that the phase and amplitude errors are identified exactly. It should be noted that Case (i) 

represents a highly ideal case, where the signals involved has a constant frequency, constant 

phase and amplitude errors and in the absence of any nonlinear or noise effects.  
 

 
 

Fig. 5. Tracking Evaluation with PAEI for Case (i) [3] 
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4.1.2. Case (ii) 

 

In Case (ii), the command displacements (indicated as uc in Fig. 6) are generated by solving the 

equation of motion of a single-degree-of-freedom (SDOF) structure using the MATLAB 

Simulink model shown in Fig. 6. 

 

 

Fig. 6. Simulink model used in Cases (ii) and (iii) [3] 

 

The measured displacements (indicated as um in Fig. 6) are then obtained by introducing an 

integer delay block from the Simulink library for the phase error, a multiplier (gain) block to 

introduce the amplitude error and a random number generator to consider the noise effects. As 

can be seen from Table 1, the integer delay block z 
-5

 provides a time lag of 5 time steps, where 

the time step size is set by the Simulink solver (in this case 0.001 sec.). Setting the gain value as 

1.1, a 10% overshoot amplitude error is introduced in the measured displacement. The restoring 

force characteristics of the SDOF are captured in the embedded function with the name “State 

determination” where an elastic-perfectly plastic spring with strain hardening is programmed. By 

adjusting the value of the yield parameter this spring can be made to respond linearly as well. 

The numerical values of the parameters that are used in representing the SDOF system are given 

in Table 2. 

 

Table 2. Properties of the SDOF structure [3] 

Stiffness (k) 

Undamped 

Natural 

Period (Tn) 

Damping Yield Displacement Strain Hardening 

Coefficient  y (mm) () 

(kN/m) (sec)  Linear Nonlinear Linear Nonlinear 

11500 1.15 0.02 --- 10 --- 0.01 

 

As noted previously, HSEM requires the measured restoring force to evaluate tracking 

performance. In Case (ii) by using the Simulink model to solve the equation of motion with the 

state determination process, the restoring force becomes readily available which in turn makes it 

possible to have a comparison between HSEM, TI and PAEI. In Case (ii), the structure is 

assumed to be linear, there is no noise, and the above mentioned phase and amplitude errors are 
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present in the measured displacements. The only difference between Case (ii-a) and Case (ii-b) is 

the amplitude of the forcing function. Since the amplitude of the applied force is twice as much 

in Case (ii-b) as in Case (ii-a), the resulting displacements in Case (ii-b) have twice larger 

amplitudes compared to Case (ii-a) (See Fig. 7 (a) and (b)). This is expected as a linear dynamic 

system is simulated under two different level of force with everything else being the same. 

Fig.7(c) and (d) show the resulting SSP’s where the latter has the same major axis inclination but 

is bigger as a result of the larger displacements involved. The restoring force-displacement plots 

provided in Fig. 7(e) confirms that the structure behaves linear elastically.  

 

 

Fig. 7. Tracking evaluation comparisons with PAEI, HSEM and TI for Case (ii) [3] 

 

Although the exact same errors are present in both cases, the tracking evaluations performed 

by using HSEM and TI (Fig. 7(f) and 7(g)) erroneously indicate larger errors for Case (ii-b). This 

is attributed to the formulation of both of these methods. HSEM is based on the energy error 

between the hysteresis loops of measured restoring force and measured and desired 

displacements respectively (i.e., E
error

). When the command displacement amplitudes increase, 

even if the error between the command and measured signals remains the same, the energy error 

increases (simply because the hysteresis loops involved get larger). Although the normalization 

terms (i.e., strain energy and input energy) are introduced in the denominator of HSEM, as Case 

(ii) reveals, HSEM results are still affected by the amplitude of the command displacements. 
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Similarly, TI results are affected when the size of the SSPs change as a result of the change in the 

amplitude of the displacements involved (even though the errors between them remain 

unchanged).  

 

 

Fig.7 (Continued). Tracking evaluation comparisons with PAEI, HSEM and TI for Case (ii) [3] 

 

Figures 7(i) through (l) show that PAEI do not suffer from the same limitation. Again, this is 

attributed to the formulation of the proposed indices: rather than the enclosed areas (either under 

the hysteresis loops or SSPs), PAEI directly uses the closed-form relationships between the 

ellipse coefficients and the phase and amplitude errors. In Case (ii) the command displacements 

are obtained by solving the equation of motion of an underdamped SDOF system subject to a 

sinusoidal forcing function. As a result, the transient and steady state components of the resulting 

displacements will contain the forcing frequency and natural frequency of the structure. 

Considering these frequencies, the delay introduced in time domain (i.e., 5 time steps) translates 

into 0.03 rad, and 0.02 rad of phase lags, respectively. As can be seen in Fig. 7(i) and (j), in both 

Case (ii-a) and Case (ii-b) the PEI is able to exhibit phase values around this range. Also, as the 

amplitude error in the measured displacements are introduced as a percentage (10%) of the 

command displacement in both cases, the overshoot errors are expected to roughly range from 0 

to 1 mm. in Case (ii-a) and from 0 to 2mm. in Case (ii-a). In Fig. 7(k) and (l) the amplitude 

errors identified are in the expected range. 
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4.1.3. Case (iii) 

 

Case (iii) studies the tracking evaluation in the presence of nonlinearity in the structural 

response, noise and a sudden change in error in the measured signal (in this case a change from 

overshoot to undershoot amplitude error). Simulink model presented in Fig. 6 is used where the 

errors provided in Table 1 are present in the measured signal. 

 

 
 

Fig. 8. Tracking evaluation comparisons with PAEI, HSEM and TI for Case (iii) [3]  

 

As typical for the nonlinear dynamic response of the structures, the command displacement 

history provided in Fig. 8(a) oscillates about a non-zero position after the yielding phenomenon 

takes place (see Fig. 8(c)). Also, there is a sudden change in the amplitude error introduced; it 

switches from overshoot to undershoot suddenly at 5 seconds. Although not very realistic (even 

if such a switch were to occur in a real experiment, it would do so gradually over a period of 

time), the change in the error, together with the displacement history that oscillates about a 
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nonzero position result in SSPs that move around and rotate in the synchronization subspace (see 

Fig. 8(b)), As such, Case (iii) is a challenging scenario for PAEI where the centering and scaling 

transformations introduced in the formulation will be put to test. 

In Fig. 8 (d) and (e) both HSEM and TI are able to qualitatively indicate the presence of the 

existence of the time delay, where, as a result of the use of the transpose areas in its formulation, 

TI is less sensitive to the presence of the noise. Fig. 8 (g) and (h) show that PAEI successfully 

quantify the phase and amplitude errors. Note that in the results from all the indicators, there is a 

distortion around the time where the sudden switch from overshoot to undershoot takes place, 

which should be ignored. 

 

4.1.4. Case (iv) 

 

In Case (iv) tracking evaluation of the results of a real-time hybrid test is provided. The test 

was performed at the Lehigh University NEES RTMD facility and involved a SDOF steel 

moment resisting frame (MRF) as the nonlinear analytical substructure and a pair of elastomeric 

dampers (that was assumed to be installed on the web of the floor beams of the MRF) as the 

experimental substructure where the fundamental natural frequency of the test structure was 

found to be around 5.5 rad/sec. More information on the test setup, and testing method and 

results can be found in [3]. Fig. 9(a) displays the command and measured displacements for the 

first floor obtained from the real-time hybrid test, the corresponding SSP can be seen in Fig. 9 

(b). The experimental substructure exhibits nonlinear behaviour and the hysteresis loops are 

provided in Fig. 10 (c). Tracking performance evaluation using HSEM (Fig. 9 (d)) reveals that 

there is a time delay between the command and measured signals. 
 

 
 

Fig. 9. HSEM Tracking evaluation for Case (iv) [3] 

 

Phase and amplitude errors are also quantified in Fig. 10. To verify the PAEI results enlarged 

time windows are investigated in Fig. 11. 



14 
 

 
 

Fig. 10. PAEI Tracking evaluation for Case (iv) [3] 

 

 
 

Fig. 11. Enlarged time windows to verify PAEI results for Case (iv) [3] 

 

Fig. 11(a) shows the enlarged view of command and measured displacements from Fig. 9(a) 

around 14.35 sec where a lumped overshoot error of 0.07 mm can be observed. The enlarged 

view of AEI around 14.35 sec (Fig. 11(b)) has an acceptable agreement with the observed 

amplitude error. Using the fundamental natural frequency of the test structure considered in Case 

(iv) (i.e., 5.5 rad/sec) the delay observed in Fig. 11(a) translates into a time delay of 0.002 sec (or 

2 t), which is in a good agreement with the results in Fig. 9(a). 

 
4.2. FREQUENCY DOMAIN-BASED ERROR INDICATORS (FDB) 

 

4.2.1. Case (v) 

 

Two scenarios are considered for this case. In the first scenario, using the Simulink model of 

the inner loop, the effectiveness of the FDB error indicators in handling the signals with noise is 

studied. A comparison is made between the results obtained from the proposed FDB indicators 

and other available indicators (i.e., TI and PAEI) in order to evaluate the performance of the 

FDB error indicators. The predefined displacements are shown in Equations 8 and 9: 

 

                       (8) 

                                  (9) 

 

In Equations 8 and 9, a random number generator with a Gaussian distribution is used to 

consider the noise effects where the random number changes between zero and one and the 

multiplier K is assumed to be 0.10 mm. Time history and SSP of the uc and um signals are shown 

in Fig. 12(a) and 12(b), respectively. TI and estimated amplitude ratio and phase error are also 

shown in Fig. 12. Note that                        and       . By comparing 

the results in Fig. 12(d) and 12(e) with the known errors, it can be seen that despite the relatively 
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high introduced noise level, FDB indicators can estimate the errors with an acceptable level of 

accuracy. 

 
 

 

 
 
 

Fig. 12. Effectiveness of the FDB error indicators in dealing with noise: d) amplitude ratio and e) phase 

error of the signals [5] 

 

4.2.2. Case (vi) 

 

In Case (vi), it has been shown that the amplitude of the command displacements affects the 

accuracy of the some of the existing error indicators such as TI and HSEM. To investigate this, 

the amplitudes of the predefined command and measured displacements in Case (vi) are changed 

linearly with time. This variation is shown in Equation 10 and 11:  
 

                           (10) 

                           (11) 

 

where,    and    are 0.092 and 0.369 radians, respectively. Thus, the amplitude ratio for this set 

of command and measured signals is equal to 1.25. Similarly, the phase error for this case is 

equal to -0.277 rad or -15.82 deg. Fig. 13 shows time histories of command and measured 

displacements (Fig. 13(a)), the corresponding synchronization subspace plot (Fig 13(b)), TI (Fig. 

13(c)) and PAEI (Fig 13(d) and 13(e)) for this case. FDB indicators are also plotted in Fig. 13(f) 

and 13(g). Since all the command displacements considered in Fig. 13 have the same frequency 

and a constant time delay, the phase between the command and measured displacements 

estimated by TI, PAEI and FDB error indicators should be constant and the same. However, as 

discussed above, TI for each case is changing, implying that the slope of the tracking indicator is 

affected by the amplitude of the command displacement. 

Table 3 compares the averaged FDB error indicators (from Fig. 13(f) and 13(g)) with the FEI 

error indicators. The known values of the amplitude and phase errors are also provided in the 

(c) (b) (a) 

(d) (e) 
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table. FDB indicators are able to accurately quantify both the phase and amplitude errors and are 

in agreement with the values of the known errors and those measured by FEI. 
 

 

 
 

 

 
 

 

 
 

Fig. 13. Comparison between FDB and other error indicators for signals with time-varying amplitudes [5] 

 

Table 3. Comparison between FDB and FEI error indicators with the exact solution for Case (vi) [5] 
 

 Known values Averaged FDB indicators FEI indicators 

Amplitude Ratio 1.25 1.245 1.250 

Phase Error (deg) -15.82 -15.749 -15.871 

 

4.2.3. Case (vii) 

 

In this case, in order to assess the accuracy of the FDB error indicators in quantifying the 

actuator tracking error, results from a real-time hybrid simulation are evaluated. The experiment 

was performed at the Lehigh University NEES RTMD facility and involved an SDOF steel 

moment resisting frame as the nonlinear analytical substructure and a pair of elastomeric 

(f) 

(a) (b) (c) 

(d) (e) 

(g) 
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dampers as the experimental substructure. This particular real-time hybrid simulation result 

corresponds to another experiment with the same test setup explained in Case (iv). Recorded 

measured and command displacements are evaluated using TI, θpc [4] and HSEM. Fig. 14(a) 

shows the command and measured displacements obtained from the real-time hybrid simulation 

and the enlarged windows of these signals around 19.53 s and 23.35 s are shown in Fig. 14(c) 

and 14(d), respectively. In addition, the experimental substructure exhibits nonlinear behaviour 

and the hysteresis loops are provided in Fig. 14(b). 

 

 
 

 
 

Fig. 14. Command and measured displacement time histories and hysteresis loop for Case (v) [5]   
 

An important property of both HSEM and TI is their ability to qualitatively determine the 

phase error type. The negative and positive global slope of these plots corresponds to phase lead 

and phase lag, respectively. This test is particularly important because as shown in Fig. 15(a) and 

15(b), the results of previous studies showed that the phase error switches from lead to lag to 

lead during the experiment. This is consistent with the observations in Fig 14(c) and 14(d). The 

slope of TI does not provide any information about the amplitude errors. 

  

 

 

Fig. 15. Evaluation of the tracking errors using available methods: a) HSEM, b) TI and c) θpc [5] 

(a) (b) 

(c) (d) 

θ
 

(a) (b) (c) 
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Fig. 16(a) and 16(b) show the FDB error indicators for Case (vii). A closer look at Fig. 16 

indicates that FDB error indicators successfully distinguish between lag and lead, and overshoot 

and undershoot errors. In other words, Fig. 16(a) shows that sign of the FDB phase error 

indicator is positive for the first portion of the signal and it becomes negative between the 16.5 

and 21 seconds and then finally it changes to positive after the 21
st
 second. This is in agreement 

with the observations from TI and HSEM. The amplitude error in Fig. 16(b) is also smaller than 

1 which indicates an overshoot error. 
 
 

 
 

Fig. 16. FDB error indicators for Case (v) [5] 

 

Moreover, using the fundamental natural frequency of the test structure considered in Case 

(vii) (i.e., 5.5 rad/s) the 0.002 s time delay observed in Fig. 14(c) translates into a -0.65 deg 

phase error, which is in good agreement with the results in Fig. 16(a) at around 19.53 s. 

It is shown here that FDB error indicators can uncouple the phase and amplitude errors and 

can accurately quantify them. As such, their performance is superior in comparison to the 

previous indicators. In 2014, FDB error indicators were successfully implemented in real-time, 

and incorporated into the control loop of an adaptive controller (i.e., 2DOF controller). More 

information about the incorporation of these indicators into the controller and their experimental 

validation could be found in [5]. 

5. SUMMARY 

 

One of the key factors in obtaining reliable hybrid simulation results is the accuracy of the 

servo-hydraulic actuator in tracking the command displacements. In recent years, several 

tracking error indicators were developed to assess the accuracy of actuator control in hybrid 

simulations. Some of these measures were published in the NEEShub [1]. This document 

introduced two additional sets of indicators (PAEI and FDB error indicators). PAEI are derived 

based on the characteristics of the SSP of the command and measured displacements and FDB 

error indicators are formulated in frequency domain. Both of these local response measures can 

uncouple and separately quantify the amplitude and phase errors. Moreover, both of these error 

indicators employ a moving window approach with proper windowing functions. This enables 

the FDB error indicators to be implemented and executed in real-time. As such, FDB indicators 

not only become online assessment tools that can assess the tracking performance of the 

hydraulic actuator as the real-time hybrid simulation progresses, but they can also be 

incorporated into the servo-hydraulic control law. Through several numerical simulations, the 

effects of the window size, windowing functions, noise, frequency, and amplitude characteristics 

of the signals processed were investigated through numerical simulations. The performance of 

PAEI and FDB error indictors are also investigated by processing command and measured 

(a) (b) 
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displacements from a real-time hybrid simulation performed at Lehigh NEES RTMD site. It is 

shown that PAEI are able to quantify the errors, even when the test structure considered exhibit 

nonlinear behaviour and in the presence of noise. It is also shown that unlike energy-based 

measures and TI, PAEI and FDB error indicators results are unaffected by the amplitude of the 

command displacements. As such, the two discussed error measures can serve as standard 

indicators to compare the accuracy of the real-time test results which have considerably different 

command displacement histories.  
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