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Abstract

Many key aspects of control of quantum systems involve manipulating

a large quantum ensemble exhibiting variation in the value of parame-

ters characterizing the system dynamics. Developing electromagnetic

pulses to produce a desired evolution in the presence of such varia-

tion is a fundamental and challenging problem in this research area.

We present such robust pulse designs as an optimal control problem

of a continuum of bilinear systems with a common control function.

We then develop a unified computational method for optimal pulse

design using ideas from pseudospectral approximations, by which a

continuous-time optimal control problem of pulse design can be dis-

cretized to a constrained optimization problem with spectral accuracy.

This is a highly flexible and efficient numerical method that requires

low order of discretization and yields inherently smooth solutions.

Contribution

Challenge To design robust, practical pulses for
quantum control.

Impacts Immediate applicable to structural biology,
molecular imaging and quantum optics.

Universal The pseudospectral method delivers a highly
general framework for pulse design in conjunction with
optimal ensemble control theory.

New Formulation for Optimal Pulse Design

min

∫
Ω

[
ϕ(T, x(T, s)) +

∫ T

0

L(x(t, s), u(t)) dt
]
ds

s.t.
d

dt
x(t, s) = f (x(t, s), u(t), s)

e(x(0, s), x(T, s)) = 0

g(x(t, s), u(t)) ≤ 0, ∀ s ∈ Ω ⊂ Rd

t ∈ [0, T ]

Mutlidimensional Pseudospectral Discretization

min
b− a

2

Ns∑
r=0

[
ϕ(T, x̄Nr) +

T

2

N∑
i=0

L(x̄ir, ūi)w
N
i

]
wNs
r

s.t.
N∑
k=0

Djkx̄kr =
T

2
f (x̄jr, ūj)

e(x̄0r, x̄Nr) = 0

g(x̄jr, ūj) ≤ 0, ∀ j ∈ {0, 1, . . . , N}
r ∈ {0, 1, . . . , Ns}
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Optimal Coherence Transfer (NMR)

max Javg =
1

2δ(ξ2 − ξ1)

∫ 1+δ

1−δ

∫ ξ2

ξ1

x4(T, ξ, J) dξ dJ

s.t.
d

dt


x1

x2

x3

x4

 =


0 −u1 0 0
u1 −ξ −J 0
0 J −ξ −u2

0 0 u2 0



x1

x2

x3

x4


x(0, ξ, J) = [1 0 0 0]′√
u2

1(t) + u2
2(t) ≤ A, ∀t ∈ [0, T ]

ξ ∈ [ξ1, ξ2], J ∈ [1− δ, 1 + δ]

I Compare against analytic optimal solution: ROPE

I ROPE is only valid for a single choice of (ξ, J)

I Applications in protein NMR spectroscopy

Single Parameter Optimization
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pseudopsectral

Ensemble Optimization, ξ ∈ [0, 2], J = 1

Maximize x4(T, ξ) cost

With additional minimize energy cost

Ensemble Optimization, ξ ∈ [0, 2], J ∈ [0.5, 1.5]

Optimal Pulse Design (MRI & NMR)

max
1

4δB

∫ 1+δ

1−δ

∫ B

−B
Mx(T, ω, ε) dω dε

s.t.
d

dt

Mx

My

Mz

 =

 0 −ω εu
ω 0 −εv
−εu εv 0

 Mx

My

Mz


M(0, ω, ε) = [0 0 1]′√
u2(t) + v2(t) ≤ A, ∀ t ∈ [0, T ]

ω ∈ [−B,B]

ε ∈ [1−δ, 1+δ]

Ensemble Optimization

I Maximum Amplitude, A = 20 kHz
I Larmor Dispersion, ω ∈ [−20, 20] kHz
I RF inhomogeneity, δ = 10%
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Ensemble Optimization & Experimental Verification

A = 20 kHz, ω ∈ [−40, 40] kHz

In collaboration with G. Wagner’s Lab, Harvard Medical School
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PARACEST Contrast Optimization (MRI)

d

dt


za
xa
ya
yb
xb
zb

 =


−k1a −v u 0 0 Cb
v −k2a −ωa 0 Cb 0
−u ωa −k2a Cb 0 0
0 0 Ca −k2b ωb −u
0 Ca 0 −ωb −k2b v
Ca 0 0 u −v −k1b



za
xa
ya
yb
xb
zb

 +


Ma

0

T1a

0
0
0
0
M b

0

T1b


I Motivates designing optimal pulses robust to rf inhomogeneity

including relaxation effects
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Pseudospectral Features

Arbitrary Cost Function &
Constraints
The direct transformation of the
continuous-time optimal control problem
into a finite-dimensional constrained
optimization enables any type or
combination of cost functions and
constraints.

Smoothness
The pseudospectral method is based on
polynomial approximations, which
guarantees that the solutions will be
smooth. Certain choices of cost functions
can yield pulses with different properties,
such as slowly varying pulses for practical
experimental implementation.

Convergence
Discretizing with the pseudospectral
method empirically exhibits exponential
convergence of the solution as the
number of discretizations increases.

Ease of Implementation
The pseudospectral method can be
implemented in virtually any
programming language and can be
expressed very concisely within the
AMPL optimization framework.

Computational Complexity
The low order of approximation
characteristic of orthogonal polynomial
approximation greatly reduces the size of
the optimization problem necessary to be
solved.

Future Directions

Experimental verification
We are beginning verification of the
optimal pulses for coherence transfer for
systems with J coupling variation in
collaboration with G. Wagner at Harvard.

Extension to PARACEST
Modify and run the pseudospectral
method to derive presaturation pulses for
PARACEST imaging based on our
accomplishments in relaxation optimized
pulses and pulses robust to
inhomogeneity.

Convergence
Pseudospectral convergence rates remain
largely at the forefront of research.
Quantification and proven results are only
available for certain classes of systems.
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