

A novel intermediate-temperature two-phase mixed oxideion and carbonate-ion conductor (MOCC) has recently been developed in USC for potential applications in IT-SOFCs and CO_2 separation membranes. Excellent electrical performance has been demonstrated with MOCC-SOFCs in the temperature range (500-650°C). Remarkable effective ionic conductivity has been achieved and can be well predicted by the Effective Medium Percolation Theory (EMPT). However, the MOCCs fabricated by conventional mixing-pressing ceramic technique often have low mechanical strength and low oxide-ion conductivity due to a low sintering temperature. An effective way to overcome this obstacle is to prefabricate a strong porous solid oxide skeleton, into which the molten carbonate phase is infiltrated. This presentation summarizes the initial efforts towards this goal.

Porous Skeleton Fabrication

Flow diagram showing fabrication steps of porous SDC skeleton structure

Fabrication of a Strong Mixed Oxide-lon and Carbonate-lon **Conductor with Porous Solid Oxide Skeleton**

Lingling Zhang, Kevin Romito, Xue Li and Kevin Huang* Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, USA

Characterization

ceramic with an initial volume ratio SDC/NiO = 65/35

SEM/EDS analysis further confirms the XRD results

Solid Oxide Fuel Cells Center, University of South Carolina, Columbia, SC, 29208

X-ray diffraction patterns of the SDC/NiO ceramics (a) after being sintered at 1500°C for 10 h; (b) after being reduced in pure H_2 at 800°C for 10 h; (c) after being leached in nitric acid (initial volume

3-D X-ray image showing internal structure of an SDC porous

SEM (a) and BSE (b) images of an SDC porous structure infiltrated with an Li-Na carbonate salt (initial SDC/NIO volume ratio = 65/35)

and Li-Na carbonate

 A porous SDC structure with uniform pore size and porosity distribution has been fabricated with a "template" technique. The Li-Na carbonate has been successfully infiltrated into the fabricated SDC porous structure. • The fabricated MOCC has been showed with a high effective ionic conductivity.

support.

AC impedance spectra of an MOCC consisting of SDC65

Conclusions

Acknowledgement

Siemens Energy Inc. is greatly appreciated for their financial