TIPS - Tools to Facilitate Widespread Use of Isolation and Protective Systems, a NEES/E-Defense Collaboration (NEES-2008-0571)

By Kerri Ryan, Gilberto Mosqueda, Stephen Mahin

Version 1.0






Published on

Aug 22, 2017


Title: TIPS - Tools to Facilitate Widespread Use of Isolation and Protective Systems, a NEES/E-Defense Collaboration (NEES-2013-0571)

Year Of Curation: 2013

Description: Recent earthquakes have shown that even moderate ground shaking can produce large economic losses and major societal disruptions due to the widespread structural, nonstructural, and contents damage in code compliant buildings. Seismic isolation, in conjunction with energy dissipation, offers a simple and direct opportunity to control or even eliminate damage by simultaneously reducing deformations and accelerations. The United States once led the development and application of seismic isolation, but now this technology is more widely used in other countries. This project conducts a strategic assessment of the economic, technical, and procedural barriers to the widespread adoption of seismic isolation in the United States. NEES resources will be used for experimental and numerical simulation, data mining, networking and collaboration to understand the complex interrelationship among the factors controlling the overall performance of an isolated structural system. Innovative conceptual solutions will be developed for reducing construction costs (e.g., more effective placement of isolators and improved architectural detailing) and improving performance of isolation systems (e.g., use of new isolation devices). Coordinated experiments and computations will address behavioral uncertainties related to isolation devices, such as thermal heating, buckling and tensile capacity, geometric scaling, and strain rate effects. This project will involve shaking table and hybrid tests at the NEES experimental facilities at the University of California, Berkeley, and the University at Buffalo, aimed at understanding ultimate performance limits to examine the propagation of local isolation failures (e.g., bumping against stops, bearing failures, uplift) to the system level response. These tests, including a full-scale, three-dimensional test of an isolated 5-story steel building on the E-Defense shake table in Miki, Hyogo, Japan, will help fill critical knowledge gaps, validate assumptions regarding behavior and modeling, and provide essential proof-of-concept evidence regarding the importance of isolation technology. This integrated, holistic approach to cost-effectively and reliably limit the adverse impacts of earthquakes is also supportive of emerging trends in construction towards sustainable design. This knowledge will be integrated into a rational performance-based procedure that allows consistent comparison of the performance of alternative isolation and conventional systems in terms of safety, loss of use, and life cycle costs.The new knowledge, tools, and performance-based design framework will facilitate the effective application of seismic isolation technology, leading to substantial reductions in the losses and disruptive societal impacts associated with future earthquakes.In a collaborative effort between NEES TIPS, NEES Nonstructural, and NIED in Japan, a 5-story steel moment frame building was shaken under extreme earthquake loading at Hyogo Earthquake Engineering Research Center, commonly known as E-Defense. The specimen was shaken with seismic isolation systems and in the fixed-base configuration. Additional nonstructural components including interior walls, ceilings, piping, and concrete cladding panels were constructed for the earthquake tests. The tests took place 3 week time frame in August 2011, with 6 days of shaking.


PIs & CoPIs: Nuclear Regulatory Commission NRC-HQ-11-C-04-0067

Dates: October 01, 2007 - September 30, 2012

Organizations: University of Nevada-Reno, NV, United States

Facilities: Hyogo Earthquake Engineering Research Center (E-Defense), Miki, Japan,State University of New York at Buffalo, NY, United States,University of California, Berkeley, CA, United States

Sponsor: NSF - 0724208

Keywords: Seismic Isolation,Elastomeric Bearings,triple pendulum bearings,nonstructural systems,steel moment resisting frame,Hybrid Simulation,Shake Table Testing,Impact Testing,Impact,REPEAT Frame

Publications: "Seismic Response of a Full-scale 5-story Steel Frame Building Isolated by Triple Pendulum Bearings under 3D Excitations"                        "The Effect of the Statistical Distribution of Isolator Properties  on Building Performance"                        

Cite this work

  • Kerri Ryan, Gilberto Mosqueda, Stephen Mahin (2017), "TIPS - Tools to Facilitate Widespread Use of Isolation and Protective Systems, a NEES/E-Defense Collaboration (NEES-2008-0571),"